Subdivision Schemes for Thin Plate Splines

نویسندگان

  • Henrik Weimer
  • Joe D. Warren
چکیده

Thin plate splines are a well known entity of geometric design. They are defined as the minimizer of a variational problem whose differential operators approximate a simple notion of bending energy. Therefore, thin plate splines approximate surfaces with minimal bending energy and they are widely considered as the standard “fair” surface model. Such surfaces are desired for many modeling and design applications. Traditionally, the way to construct such surfaces is to solve the associated variational problem using finite elements or by using analytic solutions based on radial basis functions. This paper presents a novel approach for defining and computing thin plate splines using subdivision methods. We present two methods for the construction of thin plate splines based on subdivision: A globally supported subdivision scheme which exactly minimizes the energy functional as well as a family of strictly local subdivision schemes which only utilize a small, finite number of distinct subdivision rules and approximately solve the variational problem. A tradeoff between the accuracy of the approximation and the locality of the subdivision scheme is used to pick a particular member of this family of subdivision schemes. Later, we show applications of these approximating subdivision schemes to scattered data interpolation and the design of fair surfaces. In particular we suggest an efficient methodology for finding control points for the local subdivision scheme that will lead to an interpolating limit surface and demonstrate how the schemes can be used for the effective and efficient design of fair surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Thin Plate and Spherical Splines with Multiple Regression

Thin plate and spherical splines are nonparametric methods suitable for spatial data analysis. Thin plate splines acquire efficient practical and high precision solutions in spatial interpolations. Two components in the model fitting is considered: spatial deviations of data and the model roughness. On the other hand, in parametric regression, the relationship between explanatory and response v...

متن کامل

The role of inner summaries in the fast evaluation of thin-plate splines

The driving force behind fast evaluation of thin-plate splines is the fact that a sum Pn2 j=n1 λjφ(x − ξj), where φ(x) = ‖x‖ 2 log ‖x‖, can be efficiently and accurately approximated by a truncated Laurent-like series (called an outer summary) when the data sites {ξj} n2 j=n1 are clustered in a disk and when the evaluation point x lies well outside this disk. We present a means (called an inner...

متن کامل

Nonrigid Registration of Medical Images Based on Anatomical Point Landmarks and Approximating Thin-Plate Splines

Previous work on nonrigid registration of medical images based on thin plate splines has concentrated on using interpolation schemes Such schemes force the corresponding land marks to exactly match each other and thus assume that the landmark positions are known exactly However in real applications the localization of landmarks is always prone to error Therefore to cope with these errors we hav...

متن کامل

Ternary interpolatory Subdivision Schemes Originated from splines

A generic technique for construction of ternary interpolatory subdivision schemes, which is based on polynomial and discrete splines, is presented. These schemes have rational symbols. The symbols are explicitly presented in the paper. This is accompanied by a detailed description of the design of the refinement masks and by algorithms that verify the convergence of these schemes. In addition, ...

متن کامل

Subdivision surfaces for CAD - an overview

Subdivision surfaces refer to a class of modelling schemes that define an object through recursive subdivision starting from an initial control mesh. Similar to B-splines, the final surface is defined by the vertices of the initial control mesh. These surfaces were initially conceived as an extension of splines in modelling objects with a control mesh of arbitrary topology. They exhibit a numbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1998